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1. INTRODUCTION

Finite mixture models are used to model heterogeneous data sets thanks to their
flexibility. These models are commonly applied in fields such as classification,
cluster and latent class analysis, density estimation, data mining, image analysis,
genetics, medicine, pattern recognition and suchlike; for more detail see [7, 12,
20, 21, 27].

In general, the distribution of mixture model components is assumed to be
normal because of its tractability and wide applicability. In practice, however, the
data sets may be asymmetric and/or heavy-tailed. For instance, there have been
a number of studies focusing on multivariate mixture modeling using asymmet-
ric and/or heavy-tailed distributions:[21] propose finite mixtures of multivariate
t distributions as a robust extension of the multivariate normal mixture model
([20]); [16] introduces multivariate skew normal mixture models; [24] and [17]
examine finite mixtures of restricted and unrestricted variants of the multivari-
ate skew t distributions of [25]; [8] explore multivariate mixture modeling based
on skew-normal independent distributions; and [18] introduce flexible mixture
modeling based on skew-t-normal distribution.

In multivariate analysis, the multivariate skew normal (MSN) distribution,
[4], [14] and [2], is proposed as an alternative to the multivariate normal (MN)
distribution in order to deal with skewness in the data. However, certain al-
ternative heavy-tailed skew distributions are required to model skewness and
heavy-tailedness because MSN distribution is not heavy-tailed. One such exam-
ple of heavy-tailed skew distribution is the multivariate skew t (MST) distri-
bution, which is defined by [5] and [13]. [3] also proposes another heavy-tailed
skew distribution called the multivariate skew Laplace (MSL) distribution, us-
ing a variance-mean mixture of the normal distribution. One advantage of the
MSL distribution is that it has a smaller number of parameters than the MST
distribution and has the same number of parameters as the MSN distribution.
Regarding finite mixtures of the multivariate skew distributions, finite mixtures
of MSN distributions were proposed by [16] to model heterogeneous data sets as
they may not be able to modeled by mixtures of MN distributions due to the
skew feature of data. On the other hand, data sets may not only have a skewness
problem, but may also have a heavy-tailedness problem to be dealt with. For
this reason, in this study, finite mixtures of MSL distributions as an alternative
to finite mixtures of MSN distributions are explored in order to deal with both
skewness and heavy-tailedness in heterogeneous data sets.

The rest of the paper is organized as follows: Section 2 summarizes certain prop-
erties of the MSL distribution; see [3] for further details of the MSL distribution.
Section 3 presents mixtures of MSL distributions and gives the Expectation-
Maximization (EM) algorithm to obtain maximum likelihood (ML) estimators
for the parameters of the proposed mixture model. Section 4 offers the empirical
information matrix of MSL distribution to compute standard errors of proposed
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estimators. Section 5 provides a small simulation study and a real data example
to illustrate the performance of the proposed mixture model. Finally, Section 6
is devoted to conclusions.

2. Multivariate skew Laplace distribution

Let Y ∈ Rp be a p-dimensional random vector which has the MSL distribution
(Y ∼ (µ,Σ,γ)) proposed by [3]. The probability density function (pdf) of this
distribution is given below:

fMSL (y;µ,Σ,γ) =
| Σ |− 1

2

2pπ
p−1

2 αΓ
(
p+1
2

)

× exp

{
−α

√
(y − µ)T Σ−1 (y − µ) + (y − µ)T Σ−1γ

}
,(2.1)

where α =
√

1 + γTΣ−1γ, µ ∈ Rp is the location parameter, γ ∈ Rp is the
skewness parameter, Σ is the positive definite scatter matrix and Γ (·) represents
the complete gamma function.

Proposition 2.1. The characteristic function of MSLp (µ,Σ,γ) is

ΦY (t) = eit
Tµ
[
1 + tTΣt− 2itTγ

]
−

p+1

2 , t ∈ Rp.

See [3] for proof of this proposition.
If Y ∼ MSLp (µ,Σ,γ) then the expectation and variance of Y are:

E (Y ) = µ+ (p+ 1)γ,

V ar (Y ) = (p+ 1)
(
Σ+ 2γγT

)
.

The MSL distribution can be obtained as a variance-mean mixture of MN distri-
bution and inverse gamma (IG) distribution. The variance-mean mixture repre-
sentation is given as follows:

(2.2) Y = µ+ V −1γ +
√
V −1Σ

1

2X

where X ∼ Np (0, Ip) and V ∼ IG
(
p+1
2 , 12

)
. Note that if γ = 0, the density

function of Y reduces to the density function of symmetric multivariate Laplace
distribution given by [22]. In addition, the conditional distribution of Y given
V = v will be:

Y |v ∼ Np

(
µ+ v−1γ, v−1Σ

)
.

The joint density function of Y and V is:

f (y, v) =
| Σ |− 1

2 e(y−µ)TΣ−1γ

2pπ
p−1

2 αΓ
(
p+1
2

)

×
{
v−

3

2 e−
1

2{(y−µ)TΣ−1(y−µ)v+(1+γTΣ−1γ)v−1}}
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Then, we have the following conditional density function of V given Y :

f (v|y) =
α√
2π

eα
√

(y−µ)TΣ−1(y−µ)

× v−
3

2 e−
1

2{(y−µ)TΣ−1(y−µ)v+α2v−1}, v > 0.(2.3)

Using the conditional density function given in (2.3), the conditional expectations
can be obtained as follows:

(2.4) E (V |y) =
√

1 + γTΣ−1γ√
(y − µ)T Σ−1 (y − µ)

(2.5) E
(
V −1|y

)
=

1 +

√
(1 + γTΣ−1γ) (y − µ)T Σ−1 (y − µ)

1 + γTΣ−1γ

Note that these conditional expectations will be used in the EM algorithm given
in subsection 3.1; see [3] for further details of the MSL distribution.

3. Finite mixtures of MSL distributions

Let y1,y2, . . . ,yn be p-dimensional random sample which comes from a g-component
mixtures of MSL distributions. The pdf of a g-component finite mixtures of MSL
distributions is given by:

(3.1) f (y|Θ) =

g∑

i=1

πif (y;µi,Σi,γi) ,

where πi denotes the mixing probability with
∑g

i=1 πi = 1, 0 ≤ πi ≤ 1, f (y;µi,Σi,γi)
represents the pdf of the ith component (pdf of the MSL distribution) given in

(2.1) and Θ =
(
π1, . . . , πg,µ1, . . . ,µg,Σ1, . . . ,Σg,γ1, . . . ,γg

)T
is the unknown

parameter vector.

3.1. ML estimation

The ML estimator of Θ can be found by maximizing the following log-
likelihood function:

(3.2) ℓ (Θ) =
n∑

j=1

log

(
g∑

i=1

πif
(
yj;µi,Σi,γi

)
)
.

However, there is not an explicit maximizer of (3.2). Therefore, in general, the
EM algorithm ([9]) is used to obtain the ML estimator of Θ. Here, we will use
the following EM algorithm:
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Let Zj = (Z1j , . . . , Zgj)
T be the latent variables with

(3.3) Zij =

{
1, if jth observation belongs to ith component

0, otherwise

where j = 1, . . . , n and i = 1, . . . , g. To implement the steps of the EM algorithm,
we will use the stochastic representation of the MSL distribution given in (2.2).
If we do so, the hierarchical representation for the mixtures of MSL distributions
will be:

Y j|vj , zij = 1 ∼ N
(
µ+ v−1

j γ, v−1
j Σ

)
,

(3.4) Vj |zij = 1 ∼ IG

(
p+ 1

2
,
1

2

)
.

Let (y,v,z) be the complete data, where y =
(
yT
1 , . . . ,y

T
n

)T
,v = (v1, . . . , vn) and

z = (z1, . . . , zn)
T . Using the hierarchical representation given above and ignoring

the constants, the complete data log-likelihood function can be written as:

ℓc (Θ;y,v,z) =
n∑

j=1

g∑

i=1

zij

{
log πi −

1

2
log | Σi | +

(
yj − µi

)T
Σ−1
i γi

− 1

2
vj
(
yj − µi

)T
Σ−1
i

(
yj − µi

)
− 1

2
γT
i Σ

−1
i γiv

−1
j − 1

2

(
3 log vj + v−1

j

)}
.(3.5)

To overcome the latency of the latent variables given in (3.5), we have to take
the conditional expectation of the complete data log-likelihood function given the
observed data yj

E
(
ℓc
(
Θ;y,v,z|yj

))
=

n∑

j=1

g∑

i=1

E
(
Zij|yj

){
log πi −

1

2
log | Σi | −

(
yj − µi

)T
Σ−1
i γi

− 1

2
E
(
Vj |yj

) (
yj − µi

)T
Σ−1
i

(
yj − µi

)
− 1

2
γT
i Σ

−1
i γiE

(
V −1
j |yj

)}
.(3.6)

Since the last part of the complete data log-likelihood function does not include
the parameters of interest it is omitted and the conditional expectation of the

other terms are taken. The conditional expectations E
(
Vj|yj

)
and E

(
V −1
j |yj

)

can be calculated using the conditional expectations given in (2.4) and (2.5),
and the conditional expectation E

(
Zij|yj

)
can be computed using the classical

theory of mixture modeling. Next, the steps of the EM algorithm can be formed
as follows:

EM algorithm:
1. Set initial parameter estimate Θ(0) and a stopping rule ∆.
2. E-Step:Compute the following conditional expectations for k = 0, 1, 2, . . .
iteration

ẑ
(k)
ij = E

(
Zij |yj , Θ̂

(k)
)
=

π̂
(k)
i f

(
yj; µ̂

(k)
i , Σ̂

(k)
i , γ̂

(k)
i

)

f
(
yj ; Θ̂

(k)
) ,(3.7)
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v̂
(k)
1ij = E

(
Vj |yj, Θ̂

(k)
)
=

√
1 + γ̂

(k)T

i Σ̂
(k)−1

i γ̂
(k)
i√(

yj − µ̂
(k)
i

)T
Σ̂
(k)−1

i

(
yj − µ̂

(k)
i

) ,(3.8)

v̂
(k)
2ij = E

(
V −1
j |yj , Θ̂

(k)
)

=
1 +

√(
1 + γ̂

(k)T

i Σ̂
(k)−1

i γ̂
(k)
i

)(
yj − µ̂

(k)
i

)T
Σ̂
(k)−1

i

(
yj − µ̂

(k)
i

)

1 + γ̂
(k)T

i Σ̂
(k)−1

i γ̂
(k)
i

.(3.9)

Using these conditional expectations, we form the following objective function:

Q
(
Θ; Θ̂

(k)
)

=
n∑

j=1

g∑

i=1

ẑ
(k)
ij

{
log πi −

1

2
log | Σi | −

(
yj − µi

)T
Σ−1
i γi

− 1

2
v̂
(k)
1ij

(
yj − µi

)T
Σ−1
i

(
yj − µi

)
− 1

2
v̂
(k)
2ijγ

T
i Σ

−1
i γi

}
.(3.10)

3. M-Step: Maximize the Q
(
Θ; Θ̂

(k)
)
with respect to Θ to get the (k + 1) th

parameter estimates for the parameters. This maximization yields the following
updating equations:

(3.11) π̂
(k+1)
i =

∑n
j=1 ẑ

(k)
ij

n

(3.12) µ̂
(k+1)
i =

∑n
j=1 ẑ

(k)
ij v̂

(k)
1ijyj −

∑n
j=1 ẑ

(k)
ij γ̂

(k)
i∑n

j=1 ẑ
(k)
ij v̂

(k)
1ij

(3.13)

γ̂
(k+1)
i =

(∑n
j=1 ẑ

(k)
ij v̂

(k)
1ij

)(∑n
j=1 ẑ

(k)
ij yj

)
−
(∑n

j=1 ẑ
(k)
ij

)(∑n
j=1 ẑ

(k)
ij v̂

(k)
1ijyj

)

(∑n
j=1 ẑ

(k)
ij v̂

(k)
1ij

)(∑n
j=1 ẑ

(k)
ij v̂

(k)
2ij

)
−
(∑n

j=1 ẑ
(k)
ij

)2

(3.14)

Σ̂
(k+1)
i =

∑n
j=1 ẑ

(k)
ij v̂

(k)
1ij

(
yj − µ̂

(k)
i

)(
yj − µ̂

(k)
i

)T
− γ̂

(k)
i γ̂

(k)T

i

∑n
j=1 ẑ

(k)
ij v̂

(k)
2ij

∑n
j=1 ẑ

(k)
ij

4.Repeat E and M steps until the convergence rule || Θ̂(k+1) − Θ̂
(k) ||< ∆ is

obtained. Alternatively, the absolute difference of the actual log-likelihood ||
ℓ
(
Θ̂

(k+1)
)
− ℓ
(
Θ̂

(k)
)
||< ∆ or || ℓ

(
Θ̂

(k+1)
)
/ℓ
(
Θ̂

(k)
)
− 1 ||< ∆ can be used as

a stopping rule ([10]).
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3.2. Initial values

In order to determine the initial values for the EM algorithm, the following
procedure given by [16] will be used:
i) Perform the K-means clustering algorithm ([15]).

ii) Initialize the component labels ẑ
(0)
j = {zij}gi=1 according to the K-means

clustering results.
iii) The initial values of mixing probabilities, component locations and component
scale variances can be set as:

π̂
(0)
i =

∑n
j=1 ẑ

(0)
ij

n
,

µ̂
(0)
i =

∑n
j=1 ẑ

(0)
ij yj

∑n
j=1 ẑ

(0)
ij

,

Σ̂
(0)
i =

∑n
j=1 ẑ

(0)
ij

(
yj − µ̂

(0)
i

)(
yj − µ̂

(0)
i

)T

∑n
j=1 ẑ

(0)
ij

.

iv) For the skewness parameters, use the skewness coefficient vector of each clus-
ter.

4. The empirical information matrix

We will compute the standard errors of ML estimators using the infor-
mation based method given by [6]. At this point, we will use the inverse of the
empirical information matrix in order to have an approximation to the asymptotic
covariance matrix of the estimators. This information matrix can be obtained as:

(4.1) Îe =

n∑

j=1

ŝj ŝ
T
j ,

where ŝj = E
Θ̂

(
∂ℓcj(Θ;yj ,vj ,zj)

∂Θ
|yj

)
, j = 1, 2, . . . , n are the individual scores and

ℓcj
(
Θ;yj,vj,zj

)
is the complete data log-likelihood function for the jth obser-

vation. The components of the score vector ŝj is(
ŝj,π1

, . . . , ŝj,πg−1
, ŝj,µ1

, . . . , ŝj,µg
, ŝj,σ1

, . . . , ŝj,σg
, ŝj,γ1

, . . . , ŝj,γg

)
. After straight-

forward algebra, we obtain these components as follows:

(4.2) ŝj,πr
=

ẑrj
π̂r

− ẑgj
π̂g

, r = 1, . . . , g − 1,

(4.3) ŝj,µi
= ẑijΣ̂

−1
i

(
v̂1ij

(
yj − µ̂i

)
− γ̂i

)
,
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ŝj,σi
= vech

(
ẑij

{
−
(
Σ̂−1
i − v̂1ijΣ̂

−1
i

(
yj − µ̂i

) (
yj − µ̂i

)T
Σ̂−1
i − v̂2ijΣ̂

−1
i γ̂iγ̂

T
i Σ̂

−1
i

)

+
1

2
diag

(
Σ̂−1
i − v̂1ijΣ̂

−1
i

(
yj − µi

) (
yj − µi

)T
Σ̂−1
i − v̂2ijΣ̂

−1
i γ̂iγ̂

T
i

)})
,(4.4)

(4.5) sj,γi
= ẑijΣ̂

−1
i

((
yj − µi

)
− v̂2ijγi

)
.

Therefore, using these equations we can form the information matrix Ie given in
(4.1). After this, the standard errors of the ML estimators Θ̂ will be found using
the square root of the matrix Î−1

e .

5. Applications

This section will illustrate the performance of the proposed mixture model
based on a small simulation study and a real data example. All computations for
the simulation study and real data example are conducted using an MATLAB
R2013a. For all computations, the stopping rule ∆ is taken as 10−6. The codes
are available upon request.

5.1. Simulation study

In the simulation study, the data set is generated from the following two-
component mixtures of MSL distributions:

f (yi|Θ) = π1fp
(
yj ;µ1,Σ1,γ1

)
+ (1− π1) fp

(
yj ;µ2,Σ2,γ2

)
,

where

µi = (µi1, µi2)
T , Σi =

[
σi,11 σi,12
σi,21 σi,22

]
, γi = (γi1, γi2)

T , i = 1, 2

with the parameter values

µ1 = (2, 2)T , µ2 = (−2,−2)T , Σ1 = Σ2 =

[
1.5 0
0 1.5

]
,

γ1 = (1, 1)T , γ2 = (−1,−1)T , π1 = 0.6.

The sample sizes are set as 500,1000 and 2000 and the number of replicates (N)
are taken as 500. The table contains the bias, standard errors (SEs) and the
mean Euclidean distance values of the estimates. The formula of bias is given
below:

b̂ias
(
θ̂
)
= θ̄ − θ,
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where θ is the true parameter value, θ̄ = 1
N

∑N
j=1 θ̂j and θ̂j is the estimate of θ

for the jth simulated data. The mean Euclidean distances of the estimators are
computed using the average of the Euclidian norm between the estimates and the
true parameter values. For instance, for the mean Euclidean distance of µ̂i will
be as follows:

|| µ̂i − µi ||=
1

N




N∑

j=1

(µ̂ij − µij)
2




1

2

.

The other mean Euclidean distances of other estimates are also obtained in a
similar way. The distance for π̂i, on the other hand, will be the mean squared
error (MSE). The formula of MSE is given as:

M̂SE (π̂) =
1

N

N∑

j=1

(π̂j − π)2 ,

where π is the true parameter value, π̂j is the estimate of π for the jth simulated

data and π̄ = 1
N

∑N
j=1 π̂j. We calculate the SEs of estimates using the empirical

information matrix of the finite mixture model based on the MSL distribution
given in Section 4.

Table 1 shows the simulation results for the sample sizes 500,1000 and
2000. We give the bias, SEs and mean Euclidean distance values of estimates and
true parameter values. It can be seen from the table that the proposed model
works accurately to obtain the estimates for all the parameters. Furthermore, the
mean Euclidian distances get smaller when the sample sizes increase. We observe
similar results for the SEs of the estimates. These values decrease as the sample
sizes increase. All these findings confirm that the proposed finite mixture model
will be an alternative finite mixture model for modelling heterogeneous data with
skew and heavy-tail components.

5.2. Real data example

This real data example will investigate the bank data set, which was given
in Tables 1.1 and 1.2 by [11] and examined by [19], to model through a skew-
symmetric distribution. Concerning this data set, there are six measurements
made on 100 genuine and 100 counterfeit old Swiss 1000 franc bills. This data
set was also analyzed by [16] to model mixtures of MSN distributions. He used
the variables X1, the width of the right edge, and X2, the length of the image
diagonal, that reveal a bimodal distribution with asymmetric components. Fol-
lowing this, the current study uses Swiss bank data to illustrate the applicability
of the finite mixtures of multivariate skew Laplace distributions (FM-MSL) and
compares the results with the finite mixtures of multivariate skew normal distri-
butions (FM-MSN). The estimation results are displayed in Table 2 for FM-MSN
and FM-MSL. The table contains the ML estimates, standard errors of the esti-
mates for all components, the log-likelihood, the values of the Akaike information
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Table 1: Bias, SEs and mean Euclidean distance values of the estimates
for n=500,1000 and 2000.

Component1 Component2

n Parameter True Bias SE Distance True Bias SE Distance

500

π1 0.6 0.001489 0.122734 0.000533
µi1 2 −0.001200 0.174686

0.201026
−2 −0.014079 0.210878

0.273981
µi2 2 0.010775 0.176092 −2 0.031688 0.208902

σi,11 1.5 −0.018232 0.182958 1.5 −0.005309 0.232425
σi,12 0 0.002903 0.156863 0.198493 0 −0.006157 0.170339 0.254685
σi,22 1.5 −0.004315 0.188067 1.5 −0.033095 0.224071
γi1 1 −0.001810 0.256792

0.106922
−1 −0.000255 0.291138

0.139768
γi2 1 −0.005965 0.255197 −1 −0.016220 0.290819

1000

π1 0.6 0.001075 0.082913 0.000236
µi1 2 −0.007428 0.122541

0.147008
−2 −0.001296 0.146090

0.180637
µi2 2 −0.006677 0.122956 −2 −0.003134 0.146122

σi,11 1.5 −0.011271 0.127618 1.5 −0.002545 0.155037
σi,12 0 −0.008758 0.106796 0.136552 0 −0.000529 0.116473 0.169090
σi,22 1.5 −0.000720 0.128693 1.5 −0.009886 0.155416
γi1 1 0.005704 0.174375

0.078061
−1 −0.001849 0.194632

0.093384
γi2 1 0.006670 0.174589 −1 −0.002547 0.192690

2000

π1 0.6 0.000593 0.057421 0.000119
µi1 2 −0.002704 0.086564

0.103007
−2 0.004608 0.102633

0.126149
µi2 2 0.000165 0.086560 −2 −0.003348 0.103218

σi,11 1.5 −0.006294 0.088880 1.5 −0.008891 0.106630
σi,12 0 −0.003700 0.074673 0.098289 0 −0.000537 0.080978 0.116648
σi,22 1.5 0.001142 0.089714 1.5 0.000997 0.108406
γi1 1 0.002448 0.121117

0.056854
−1 −0.003021 0.133069

0.067364
γi2 1 0.001445 0.120912 −1 0.000548 0.133948

criterion (AIC) ([1]) and the Bayesian information criterion (BIC) ([26]). Addi-
tionally, we give results and criterion values for FM-MSN which was computed by
[16]. According to information criterion values, the FM-MSL has better fit than
the FM-MSN. Figure 1 displays a scatter plot of the data together with contour
plots of the fitted two-component FM-MSL model. From this plot, it can be seen
that the proposed mixture model of MSL distributions captures bimodality and
asymmetry and provides a satisfactory fit to the data.

6. Conclusion

In this paper, we have proposed mixtures of MSL distributions and given
the EM algorithm to obtain the estimates. A small simulation study has been
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Table 2: ML estimation results of the Swiss bank data set for FM-MSN
and FM-MSL.

FM-MSN FM-MSL

1 2 1 2

Estimate SE Estimate SE Estimate SE Estimate SE

π1 0.504 0.036 - - 0.521 0.163 - -
µi1 130.38 0.122 129.32 0.062 130.20 0.118 129.65 0.076
µi2 140.06 0.064 141.39 1.125 139.50 0.152 141.76 0.201
σi,11 0.068 0.023 0.037 0.016 0.067 0.054 0.104 0.030
σi,12 0.051 0.015 −0.012 0.015 0.001 0.037 −0.023 0.043
σi,22 0.056 0.027 0.154 0.032 0.371 0.100 0.194 0.218
γi1 −0.230 0.043 0.494 0.077 −0.017 0.108 0.034 0.060
γi2 −0.800 0.067 0.177 1.433 0.054 0.154 −0.148 0.198

ℓ
(
Θ̂
)

−310.07 -152.30

AIC 650.14 334.60
BIC 699.61 384.08

128.5 129 129.5 130 130.5 131 131.5

X
1

137

138

139

140

141

142

143

X
2

Figure 1: Scatter plot of the Swiss bank data set along with the contour
plots of the fitted two-component FM-MSL model
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provided to demonstrate the performance of the proposed mixture model. This
shows that the proposed mixture model has accurately estimated the parameters.
A real data example has also been offered to compare the mixtures of the MSL
distributions with the mixtures of MSN distributions. This comparison proves
that the proposed model has the best fit according to the information criterion
values. This means that the proposed model can be used as an alternative mixture
model to the mixtures of MSN distributions.
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